Evolution in Four Dimensions

Chapters 7-10

Outline by John Protevi of

Eva Jablonka and Marion Lamb, *Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life* (MIT, 2005)

LSU French Studies

www.protevi.com/john/Morality/4dimensions7-10.pdf protevi@lsu.edu

Permission granted to copy and distribute for academic use with proper attribution.

Chapter 7: Interacting Dimensions – Genes and Epigenetic Systems

- I) Introduction
 - A) Concept of genetic assimilation will be important
 - B) Two ways epigenetic dimension can influence genetic dimension
 - 1) Generation of variation
 - 2) Selection bias
- II) Effects of Epigenetic systems on generation of genetic variation
 - A) Recap of previous points about DNA
 - 1) DNA is always packaged in chromatin, often with methyls
 - 2) Epigenetic factors influence gene expression (high methylation tends to turn off genes)
 - 3) Epigenetic marks reconstructed after DNA replication (e.g., mitosis in somatic cell lineages)
 - B) Epigenetic marks affect probability that a region will undergo genetic change
 - 1) Types of change
 - a) Mutation
 - b) Recombination
 - c) Transposons ("jumping genes")
 - 2) Change more likely in low chromatin / high gene activity regions (but there are exceptions)
 - C) Significance of epigenetically-influenced genetic changes for development / evolution
 - 1) Development: cancer
 - 2) Generation of mutations in germ-cell lines
 - a) McClintock and stress-induced transposons
 - b) Transposons correlated with low methylation
 - 3) Are such changes adaptive?
 - a) Or simply "parasitic" / "selfish" genes?
 - b) Plants are able to take advantage of such stress-induced transposons due to modularity
 - 4) These transposons can lead to mutations by messing around with gene regulation
 - 5) But in general "we do not know full evolutionary significance of effects of EIS on mutations"
- III) How EISs have molded evolution of development
 - A) EIS role in cell memory is precondition for evolution of multicellulars
 - 1) w/o cell memory, uncontrolled cell type switches can hurt organism efficiency
 - 2) so you need evolution for EISs allowing flexibility and reliability
 - B) Evolution of EIS role in development so gametes have neutral state allowing cell differentiation
 - 1) Locked-in cell types cannot become gametes, so strong EIS prevents danger that way
 - 2) Reason for early germ-line segregation in animals
 - 3) Reprogramming in meiosis and gamete production

- C) Genomic Imprints and Gene Selection
 - 1) Parental marking on inherited chromosomes affect gene expression
 - 2) Originated as incidental by-products of different DNA packaging in gametes
 - 3) Developmental functions
 - a) Sex determination
 - b) "dosage compensation"
 - i) Female inactivation of one X chromosome
 - ii) In extraembryonic tissues, it's always father's X that is inactive
 - (a) Haig's hypothesis to account for this phenomenon
 - (b) Countering "greedy" embryos requires strong parental markers
 - c) Possible means for fathers to influence daughters (sons receive only Y from fathers)
- IV) Induced Epigenetic Variations and the Selection of Genes
 - A) Russian silver fox experiment:
 - 1) Domestication changes phenotype: behavior, hormones, morphology, and chromosomes
 - 2) Belyaev's interpretation
 - a) Stressful situations allow "dormant" genes to become activated
 - b) Phenotypic changes are due to epigenetic rather than genetic change
 - c) JL: cf. McClintock, who posits genomic change (transposons) due to stress
 - 3) JP: stress makes unexpressed variation be now exposed to selection
 - a) But what is "unexpressed variation"?
 - b) It's variation at the level of networks of regulation of gene expression
 - c) NOT at level of structure of DNA sequences (McClintock's transposons)
 - d) So we have to think the "virtual" being of such "unexpressed" variation
 - B) Genetic Assimilation: How Interpretation Selects the Score
 - 1) Stress-induced epigenetic changes can guide selection of genetic variants
 - a) Waddington provided a Darwinian explanation for Lamarckian IAC
 - b) Background:
 - i) Most development is robust, despite genetic / environmental variation
 - ii) But mutants can exhibit great phenotypic variation
 - iii) Because the hadn't been subject to NS which selects for developmental "canalization"
 - c) Canalization presupposes "invisible" (= shielded from NS) genetic variation
 - d) Stress reveals this variation (exposes it to NS,) by allowing it to produce new phenotypes
 - e) So canalization has a double effect
 - i) In normal circumstances it masks variation and allows it to accumulate
 - ii) In stress it allows development of new phenotypes exposed to NS and thus new evolutionary potential
 - (a) JP: but what exactly is "masked"?
 - (b) It is "unexpressed genetic variation"
 - 1. But is that structural genetic variation (different DNA sequences)?
 - 2. Or is it functional genetic variation (networks of gene regulation)?
 - a. If the latter, then what's masked is the potential for forming new networks, which include cell conditions / enzymes, etc
 - b. E.g., JL p. 268: selection "brings together" previously hidden [and previously independent!] genetic variations
 - i. But what is ontological status of this potential to form new networks out of previously independent elements?
 - ii. Here I think Deleuze's virtual can help
 - 2) Waddington called his process "genetic assimilation"
 - a) Recurrent X-gen environmental stresses produce recurrent epigenetic changes

- b) Individuals with genes enabling quick and easy production of those epigenetic changes thrived and those genes spread, so that most members of the population now need only slight environmental input
- c) Eventually, the phenotype is genetically assimilated
- d) NB: West-Eberhard writes at 448 of her review that this is better version: "an induced epigenetic change that occurs repeatedly can guide selection on phenotypes that favor genes that bias development toward production of same phenotype"
- 3) So big question, post Molecular Revolution: what are mechanisms of genetic assimilation?
- C) Genetic Assimilation Meets Molecular Biology
 - 1) Revival of Waddington
 - a) Ecological biologists looking to phenotypic plasticity
 - b) Evo-devo interest in epigenetics and regulation of gene expression
 - c) Possible mechanisms for genetic assimilation
 - 2) Rutherford, Linquist et al.
 - a) Protein folding sometimes needs "chaperones," like Hsp90
 - b) Dual function of Hsp90
 - i) Normal conditions: stabilizes proteins regulating development by helping them fold
 - ii) Stress conditions: helps protect / restore damaged proteins
 - c) Experimental results show Hsp90 is developmental buffer, masking genetic variation
- D) A Revealing Yeast Prion
- V) Epigenetic Revelations
 - A) Summary of main points
 - 1) Belyaev: hidden genetic variation revealed by domestication
 - 2) Waddington:
 - a) Developmental canalization through NS of buffering combinations
 - b) Stress pushes development out of canals and produces different phenotypes which expose previously hidden genetic variation to new round of NS
 - c) Genetic assimilation: induced phenotypes can be produced w/o environmental induction
 - 3) Lindquist group posits Hsp90 as buffering mechanism
 - 4) Rudner suggests heritable epigenetic variation
 - 5) Prions may also be transmitted
 - B) Conclusions:
 - 1) Epigenetic changes can reveal masked (due to developmental canalization) genetic variation
 - 2) Genetic assimilation is Darwinian explanation of supposedly Lamarckian evolution
 - a) Lamarckianism requires IAAC (inheritance of acquired adaptive characters)
 - b) But not all environmentally induced phenotypic plasticity is adaptive
 - 3) Inheritance of induced epigenetic changes: new dimension to evolution
 - a) Additional source of variation
 - b) Arise during changing conditions, when variation is most important
 - c) Reversibility of epigenetic variations is quicker and easier
 - d) Can do a "holding job" until genes catch up (W-E: genes are followers, not leaders)

VI) Dialogue

Chapter 8: Genes and Behavior, Genes and Language

- I) Introduction
 - A) Environment's role in evolution
 - 1) Traditionally: selection of [mutation / sexual recombination] variants
 - 2) Generation of developmental variants [phenotypic / developmental plasticity]
 - a) Ch 7 considered morphology
 - b) Ch 8 looks at behavior

- B) Niche-construction: organisms affect environment; thus selection pressures for self and X-gen
- II) Genes, Learning, and Instincts
 - A) How to explain evolution of instinct by NS?
 - 1) Learned behavior becomes innate
 - 2) Sexual selection works alongside NS
 - 3) Baldwin effect, as read through Waddington's genetic assimilation
 - a) Presupposes unexposed genetic variation (this time for learning, not morphology)
 - b) Environmental changes expose differential learning capacities
 - i) These learning capacities can be selected
 - ii) And thus the genetic components of that learning capacity can be assimilated
 - B) Expanding the Repertoire: The Assimilate-Stretch Principle
 - 1) Previous treatment:
 - a) Selection for learning undermines learning by replacing it w/ instinct
 - b) But this presupposes a stable environment
 - 2) Changing environment: leads to selection for behavioral / learning flexibility
 - 3) Consequences of genetic assimilation:
 - a) Assimilate-stretch principle: adding behavior to instinct frees learning and creates possibility of cumulative sophisticated behavior
 - b) Categorization:
 - i) Full assimilation might lock in a specific identification
 - ii) Partial assimilation might allow for categorization
- III) Cultural Niche-construction
 - A) X-gen transmission of changed environment via learning co-implicates genes and behavior
 - B) Durham and co-evolution of genes and culture
 - 1) Dairy practices and lactose / lactase
 - 2) Slash & burn agriculture and mosquitoes / malaria / sickle-cell
 - C) Tay-Sachs
 - 1) Evolution of TB-fighting allele due to ghettoization of Jews?
 - 2) Now, the inverse: presences of Tay-Sachs allele changing cultural practices re: screening
 - D) Problem
 - 1) If culture is constantly changing niche and hence conditions for genetic NS, is there time for genes to ever catch up?
 - 2) JP: maybe NS for genes for general intelligence / flexible learning / cortical plasticity?
 - 3) IOW, instead of assimilation of instincts, assimilation of loss of instinct?
 - 4) So human nature is to be open to culture as our second nature? (cf. Wexler)
- IV) What is Language?
 - A) Three schools of thought
 - 1) Chomsky and generative grammar / innate UG / "language organ"
 - 2) Functionalists: language as product of general cognitive mechanisms
 - 3) Daniel Dor: constrained communication / core set of semantic categories in all languages
 - B) How Language Changed the Genes
 - 1) Dor and Jablonka: language = co-evolution of genetic and cultural inheritance systems
 - a) Niche-construction and genetic assimilation both play role
 - b) Adaptive innovations must meet two constraints
 - i) Good for communication (blend of ambiguity and precision)
 - ii) Easy to learn, remember, use
 - c) There will have to be genetic component for neural / vocalization changes
 - 2) Key for Dor and Jablonka: *partial* genetic assimilation (308)
 - 3) JP: at some point we have to acknowledge linguistic exuberance / excess / poetry!
- V) Dialogue
 - A) Moderate modularity, not "massive"

- B) Selection for both plasticity and resilience / canalization / buffering
 - 1) Both involve masking / unmasking
 - 2) W-E: "gen. accommodation" = gen. stabilization via selection of new phenotypic responses
- C) Culture / gene co-evolution of language
 - 1) "limited emergence" (vs. full blown sudden "language organ" appearance)
 - 2) Gossip and recursion

Chapter 9: Lamarckism Evolving: The Evolution of the Educated Guess

- I) Introduction
 - A) Recap of important points
 - 1) Multiple inheritance systems
 - 2) Variation can be targeted and constructed
 - 3) Adaptations can be re-purposing of existing mechanisms selected for other functions
- II) The Origin and Genetics of Interpretive Mutations
 - A) Two views on stress-induced mutagenesis
 - 1) Pathological, not adaptive
 - 2) Adaptive (shaped by NS)
 - B) Mechanisms of stress-induced mutagenesis
 - 1) SOS response system
 - 2) E. coli: making appropriate guesses (which part of genome to allow mutations in)
 - 3) Hot spots in pathogenic micro-organisms
 - C) Evolution of stress-induced "interpretive" mutagenesis
 - 1) By-products of emergency DNA repair systems
 - 2) Common and random DNA changes
- III) The Origin of EISs and the Genetics of Epigenetics
 - A) Role of EIS in ancient unicellulars
 - 1) Allows switches among heritable states
 - a) Faster rate than genetic mutation
 - b) Readily reversible
 - c) Functional link to changing environment
 - 2) Adaptation to predictable aspects of environment: e.g., cycles
 - a) Long-lived organisms can adapt physiologically / behaviorally
 - b) Short-lived organisms can change genetically
 - c) Mid-term organisms (ratio of generation to environmental cycle):
 - i) Epigenetic inheritance / cell memory tailored to environmental cycle
 - ii) NS can hone in on appropriate fit of epigenetic change to "" "" ""
 - B) Four types of EIS
 - 1) Self-Sustaining Loops
 - a) Gene expression and cellular conditions form distributed network
 - b) Stuart Kauffman and self-organization of such networks
 - i) Multiple stable configurations
 - ii) Flexibility vs. resilience maximized at "edge of chaos"
 - 2) Structural Inheritance
 - a) Lindquist lab and genetic basis of protein-templating
 - b) Cavalier-Smith and "genetic membranes"
 - 3) Chromatin Marking
 - a) Methylation:
 - i) Today it is part of a "genomic immune system"
 - ii) Probably originated for stabilizing gene regulation
 - (a) And was recruited for defense

- (b) Only after development of protein marking
- b) Protein markings
 - i) Originally transmitted by accident
 - ii) NS would select favorable changes
- c) Repeated DNA sequences
- 4) RNA interference
 - a) Evolved as genomic immune system
 - b) But perhaps regulatory functions are even older?
- IV) The Origins of Animal Traditions: Selection for Social Attention and Social Learning
 - A) With social learning, other animals are part of environment in which learning happens
 - B) Problems with asocial learning
 - 1) High cost of mistakes
 - 2) Difficulty in learning w/o help from others
- V) What is needed for the Evolution of Communication through Symbols?
 - A) Bonobo research: learned symbol use (not training!)
 - B) Two conditions for evolution of hominid symbol use
 - 1) Altered ecological / social environment: leaving forests for savannah
 - 2) Anatomical / physiological changes allowing vocalization
- VI) Transitions on the Evolution Mountain
 - A) This is a classic anthropocentric / progressive image, but authors are aware of this
 - B) Evolutionary changes via new types of information transmission
 - C) Comparison with Maynard Smith and Szathmáry
 - 1) MS and S: focus on changes in genetic system; no room for instructive processes
 - 2) JL: focus on new types of inherited information as crucial factors in evolution (EIS, BIS, SIS) and on "educated guesses" / "interpretive" variation

VII) Dialogue

- A) Evolution of evolvability still controversial
- B) Why not see all this just as temporally extended phenotypic plasticity of same genotype?
 - 1) But recognizing relative autonomy of other ISs for full view of evolution is important
 - 2) Phenotypic continuity preceded and probably formed basis of genetic system
 - a) Self-sustaining chemical cycles
 - b) Structural templating
- C) Surplus! (351)

Chapter 10: A Last Dialogue

- I) Four common objections
 - A) It's all genetic at base
 - B) Epigenetic inheritance is unimportant to both evolution and development
 - C) You haven't shown Lamarckism really works
 - 1) Definitions:
 - a) Narrow definition: feedback from soma to genes
 - b) Broader definition: "soft inheritance"
 - 2) Why not just avoid "Lamarckism" terminology?
 - D) Comparative question:
 - 1) Two versions
 - a) Broad question: what is relative importance of each system
 - b) Narrow question: what is genes vs culture for humans
 - 2) Discussion of "heritability"
- II) Practical implications (364)
 - A) X-gen effects of nutrition

- B) Agriculture
- C) Cloning
- III) Ecology and niche-construction
 - A) Margulis
 - 1) Multicellulars as community
 - 2) Phenotypic continuity is essential to ecological webs
 - B) Gaia
- IV) Political / economic forces
 - A) Behavioral / symbolic level: Sociobiology and memetics
 - B) Spencer
- V) Philosophical questions
 - A) Allies
 - 1) DST
 - 2) Lewontin
 - B) Reductionism and replicators
 - C) Process-orientation
- VI) Moral implications (379)